

Copyright © 2021 thehackerish

All rights reserved. No part of this publication may be

reproduced, distributed, or transmitted in any form or by

any means, including photocopying, recording, or other

electronic or mechanical methods, without the prior written

permission of the publisher, except in the case of brief

quotations embodied in critical reviews and certain other

non-commercial uses permitted by copyright law.

Contacts

— Email: service@thehackerish.com

— Twitter: @thehackerish

Cover photo by Анна Рыжкова from Pexels

https://www.pexels.com/@1585669?utm_content=attributionCopyText&utm_medium=referral&utm_source=pexels
https://www.pexels.com/photo/person-rock-climbing-3077882/?utm_content=attributionCopyText&utm_medium=referral&utm_source=pexels

Foreword

The bug bounty hunting community is full of technical

resources. However, any successful hunter will tell you that

succeeding takes more than technical knowledge.

Without the proper mindset, the effective tactics, and some

vital soft skills, here is the hard truth: You won’t last in the

bug bounty hunting game. You might submit a few reports

at first, but you won’t stand the lack of motivation when you

can’t find bugs for a few weeks. Worst yet, you will lose your

self-esteem when almost all of your reports won’t be

accepted. After months, the situation may even develop into

burnout.

If you understand and exploit known security vulnerabilities

in CTF challenges but still struggle to find bugs in real-world

targets, this book is for you. However, if you have no clue

what a SQL injection is, I recommend starting with a

training[1] first.

I wrote this book with a single purpose in mind: Help you

understand and master the essential skills to become a

successful bug bounty hunter. At the same time, I want it to

be entertaining.

To achieve this goal, I designed the book around the story of

Anna, a fictitious Junior Security Engineer who has just

heard of bug bounty hunting. Throughout her fascinating

journey, you will discover all the steps she took, from start

to finish.

You will witness how she took her first steps to acquire the

necessary knowledge, observe all the limits she discovers

https://subscribepage.com/owasp_top_ten_hands_on_training_lab

about herself, and grasp all the proven solutions she came

up with to overcome them.

In six months, she will collect 1000 reputation points on

HackerOne, get invited to hack on private programs, and

earn her first $5000 along the way.

Whether you have just started or have spent years in this

industry, you will undoubtedly identify with the different

hurdles throughout the story. I am sure you will add some

missing tricks to your toolset to succeed in bug bounty

hunting.

For the technical aspect of the story, you will find

appendices that support Anna’s journey. There, you will

discover how to approach a bug bounty program for the first

time and how to perform in-depth web application hacking

to increase your chances of finding bugs.

You can read this book cover to cover while bookmarking

the pivot points. Then, go back to each crucial moment

whenever you face the same situation.

Sit tight and enjoy the ride!

Table of content

FOREWORD

A BUG BOUNTY HUNTING JOURNEY

TOO GOOD TO BE TRUE

WHY IS THE START ALWAYS HARD?

MY FIRST BUG BOUNTY

N/A, INFORMATIVE, AND REPUTATION

THE DUPLICATE NIGHTMARE

RECONNAISSANCE AND PRIVATE HACKS

THE CURSE OF BURNOUT

I AM STILL MISSING SOMETHING

NOT THE SAME MISTAKE AGAIN

ACHIEVING MY GOAL

THE END?

APPENDIX A: APPROACH A NEW TARGET

1. OSINT

2. PROBE LIVE ASSETS

3. PORT SCANNING

APPENDIX B: WEB HACKING CHECKLIST

1. SCAN THE RUNNING SERVICES

2. DIRECTORY ENUMERATION

3. JAVASCRIPT ENUMERATION

4. PARAMETER DISCOVERY

5. ENUMERATE THE WEB APP TECHNOLOGIES

6. ANALYZING THE WEB APPLICATION

A bug bounty hunting

journey

Overcome your limits and become a successful hunter

Too good to be true

“Don’t make friends who are comfortable to be with. Make

friends who will force you to lever yourself up.” — Thomas J.

Watson

I remember that meeting as if it were yesterday. It is nearly

sunset. I’m sitting with my friend around a coffee after work.

The spacious, relatively calm terrace hosts few clients. I feel

the fresh breeze on my skin.

— “I am planning to buy the course and become an

Offensive Security Certified Professional[2]. Do you think it is

a good idea?” I ask.

— “That’s an ambitious step forward! Do you have what it

takes?” She replies.

I pause for a moment, take a sip of the freshly brewed hot

coffee. Then reply.

— “I think so; I know basic networking, and I have been

practicing web application hacking for about six months. I

feel ready. What do you think?”.

— “OSCP is a prestigious certification; I highly encourage

you to take it. But I am afraid you will find it challenging

with the current experience you have.”

My friend Julia got into computer hacking earlier than I. She

holds many infosec certifications, OSCP included. We met

each other at university. She had given hacking training for

the cybersecurity club members back then. Naturally, her

opinion was important to me.

Recently, I have been hesitating to apply, but I have to trust

myself if I want to advance my career in the Information

Security industry.

Julia’s answer, however, has just made me nervous. I am

starting to doubt my capabilities. Is OSCP that hard? How

challenging can it get? From the different reviews I read

about it, I agree it is not for the faint of heart. Maybe I need

to practice in another way?

I am distracted for a while, but my line of thoughts gets

interrupted when Julia smiles for a moment.

— “How many machines have you rooted?” she asks.

— “Few on Root-me.” I reply.

Root-me.org is a website Julia gave me months ago. It

contains diversified security challenges from many different

categories. The platform hosts machines that anyone can

spin up and hack online to become root, the most privileged

user on a Linux system.

— She replies with a smile on her face, “Then I guess you

aren’t ready...yet”.

Her sarcastic smile made me feel uncomfortable, but I

appreciate her honesty. OSCP’s practice lab and hands-on

exam both contain machines I must root, and I can say for

sure that is not an area I have practiced well.

— “There are plenty of machines on an emerging platform

called hackthebox.eu”, she adds.

I grab my phone from my pocket and take note of this

website; I can’t wait to see what it has to offer! I will surely

give it a try as soon as I arrive home.

— “I am assuming you will pay for OSCP from your pocket.”

she says.

— “Indeed, I have no income stream other than my full-time

job salary.”

— “What if I told you that you could learn and practice more

computer hacking while earning money? Would you be

willing to do it?”

For me, the idea of a side hustle job is something I had tried

before. I had signed up on a freelance website and

translated some articles for a client because I know three

languages. I also like graphic design; I had uploaded some

of my creations to a print-on-demand service to earn a

commission whenever someone uses my art. However, I

didn’t enjoy it much. The competition is becoming more

challenging, and I had to find a competitive advantage,

which means that I had to be serious if I wanted to succeed.

I thought I would earn easy money doing such trivial

freelancing jobs, but I was wrong! My expectations were

seemingly too high, and I lacked the motivation to keep

translating documents or creating graphic designs. After all,

I already have a salary to pay my bills, and I am not in

urgent need of money, at least at the moment.

— “I don’t feel I have enough expertise to offer penetration

testing services as a freelancer. Customers will choose

established candidates with a proven professional

experience”. I reply.

— “That’s true unless you don’t need to be a professional to

get started.” She replies confidently.

— “What do you mean? I am not sure I get your point”.

— “You can choose which clients you want to hack, and you

get paid for each vulnerability that you find. You don’t have

to wait until some client selects you.”

You are kidding me! This is too good to be true. If I heard

this claim from a random person, I would walk away without

hesitation.

— “Then how the client would trust you will do a

professional job?”. I ask skeptically.

— “Clients don’t have to trust you; they trust the system.

There is currently a crowd of hackers poking around all kinds

of public assets on the internet. I bet most of them don’t

know what they are doing, some of them find vulnerabilities

here and there, but few are the elite who find loads of bugs

in most of the targets they test”.

She pauses for a moment to take a sip. Then she says: “It is

called bug bounty hunting.”

I have never heard of that term before! I know a bounty

hunter is someone who pursues criminals and captures

them in exchange for a reward.

— “Much like Django Unchained, the movie?” I ask.

— “Oh, you’ve seen it too. Yeah, that’s the same thing. You

are the cowboy in the wild west web. Instead of criminals,

you hunt for security bugs”.

This is getting fun! I picture myself riding the network traffic

on the wild internet, looking here and there for security

bugs, and getting paid along the way. The beauty of it is

that I don’t need to compete with other bounty hunters like

in the typical freelancing gigs. I am independent; I work

when and how it pleases me.

— “But wait, how am I supposed to find what targets I have

the right to hack?” I suddenly ask.

— “Ah! Good question. These are called bug bounty

programs. There are some well-established ones. Google,

Facebook, Microsoft all have their own. But it’s generally not

that easy to find bugs there. Instead, you can choose from a

large pool of targets on bug bounty platforms. Some hunters

hack on all of them, and others are loyal to only one. It

depends on your taste and where you feel comfortable. Did I

mention that you can sign up and start hacking right now?”

This all seems too good to be true! All the alarms are firing

in my head, yet my defense levels are surprisingly low

because I hear it from a friend I trust.

This concept is new to me, and I certainly need to explore it

further. Plus, it could be a good opportunity for me to

prepare for the OSCP while earning money.

Later, I knew I was wrong.

Why is the start always hard?

“A journey of a thousand miles begins with a single step.” —

Lao Tzu

On my way home, I google “bug bounty hunting” on my

phone. Sure enough, I find what seems to be some bug

bounty platforms. I create an account on HackerOne[3] and

Bugcrowd[4] and see what targets they offer.

To my surprise, there are plenty to choose from, just like

Julia said to me. I recognize Yahoo! and Twitter among the

results, but I don’t think it’s a good idea to hack them with

my current expertise.

The next day, I get up earlier. What a beautiful sunny

morning! I prepare some coffee and go straight to the

couch. I open my laptop and sign in to Bugcrowd.

I am trying to find what I should hack. Because I want to

earn money, I filter only the paying programs. I notice Tesla

from the results, and I jump right in.

I think I am going to start with the main website. I hesitate

for a moment; I have never tested a real website before.

Nevertheless, I have to jump out of my comfort zone. I tell

myself: “Just make the first step”.

I visit the website on Firefox, browse every page, and click

on every link. The more I dig into the website, the more

confused I get. All the links have the same structure, which

is the friendly name of the page title. I can’t find any page

that stands out and no promising parameters that I can

attack!

Half an hour later, all I have is a massive number of useless

pages and an angry computer that has spun its loud fans to

keep up with the load of work. Is this how I am supposed to

hunt for bugs?

I stand up while scratching my head, trying to come up with

an answer. So far, I learned basic vulnerabilities and

practiced my knowledge on mini- challenges dedicated to

teaching one weakness at a time. However, Tesla’s website

is much more significant. Besides, I’m used to hacking

websites that already contain vulnerabilities. Therefore, I

usually focus on how to exploit them. Today, I’m not sure if

this website is even vulnerable! Since I don’t know what to

look for, how on earth am I supposed to hack this website?

Maybe bug bounty hunting isn’t as easy as I thought it

would be. If I want to find bugs, I need to learn more about

how others do it.

I spend a few hours looking on the internet for resources on

bug bounty hunting techniques. I stumble upon the Web

Application Hacker’s Handbook[5], the second edition. A

glance at the summary reveals to me how serious this book

is. It seems to be covering a great deal of web application

hacking and has a significant number of positive reviews. I

think it is going to be a good investment for me down the

road. So, I order it.

While waiting for the book to arrive, I watch some YouTube

videos from various bug bounty hunters talking about their

methodologies. I enjoyed the talk “How to shot web”[6] by

Jason Haddix, which explains a process that follows a set of

structured steps. I recognize most of them from what I have

learned about penetration testing, but the tools are new.

Besides, the approach seems reliable and exhaustive, but I

feel it is overkill for a beginner like me.

Then, I watch all the YouTube playlist videos “Web Hacking

Pro Tips”[7] by Peter Yaworski, where he interviews a handful

of bug bounty hunters. He asks many questions, such as

how they started in hacking, how they approach a target,

what they do for a living, and many more. Some concepts

seem a bit tricky for me. I might come back later If I need to.

Since most of the community is present on Twitter, I search

for “bug bounty” and subscribe to most of the accounts

from the results. Shortly after, my Twitter feed is full of

security-related content, with a significant portion on bug

bounty hunting.

To get a feel of what issues other bug bounty hunters find, I

also read as many reports as I can from HackerOne’s

Hacktivity[8], which lists publicly disclosed bug bounty

reports found by hackers on the platform.

These resources opened my eyes! Indeed, bug bounty

hunting requires more work than I expected. It seems so

apparent how ignorant I am and how much l still have to

learn.

Once I receive the book, I start devouring it right away. It is

enormous, but it answers so many questions I had in mind;

How to approach a real website? How to look for

vulnerabilities? And many more.

I keep reading until I reach the application mapping chapter.

I learn how to use a web proxy to discover web applications.

I hop on the couch, open my computer, and then launch

Burp Suite Community Edition[9], a free web proxy mostly

used by bug bounty hunters and penetration testers. I start

browsing Tesla’s website the same way as before. Only this

time, I am proxying the traffic through Burp Suite. After a

brief tour around the website, I launch the spider. I eagerly

wait for any exciting results, such as weird pages,

endpoints, or parameters. A few minutes later, I get

nothing! I only hear the fans’ noise and feel the heat of my

laptop on my legs.

Again, not the ideal approach for such a flagship website

with my limited 4GB of RAM and Core 2 Duo CPU. I have to

be more effective without overwhelming neither my

computer nor Tesla’s website.

I notice some new subdomains in the spider results. Maybe I

should start with one of those subdomains. I might get lucky

and find an overlooked bug.

I’m staring at the screen to locate any curious name from

the subdomains list when I hear my phone alarm ringing. It’s

time to go to bed.

My first bug bounty

“I find that the harder I work, the more luck I seem to have.”

— Thomas Jefferson

I got distracted by work recently. I haven’t hacked for days.

But I make sure to read at least a few pages of the book I

purchased. Every chapter opens my eyes to new knowledge.

And then it hits me! I was approaching the target from the

wrong angle. Instead of desperately looking for those low-

hanging fruits, such as backup files, or outstanding

parameters that I am used to finding in CTF[10] websites, I

should take a step back and look at the website from a

bigger perspective.

The book talks about enumerating features. Instead, I was

listing pages! I can see how distracted I was, desperately

looking for individual pages without any context, trying to

find a weakness without understanding how the target

works.

It makes sense to focus on each feature at a time, which

would help me get the big picture, categorize the endpoints,

and analyze the flow one step at a time.

The next weekend, I log into my HackerOne account and

pick a bug bounty program. I don’t want to go back to Tesla;

I want to start fresh. Any online solution with a considerable

number of features would do the job. I also want to try the

HackerOne platform.

While searching in the directory, I find a design company

that offers an online tool that intuitively helps designers

create prototypes.

This time, instead of blindly spidering the entire website, I

create an account and try to enumerate and understand as

many features as I can. To do that, I simply use it like any

regular user would, while taking mental notes.

Authentication is the first feature I notice. I remember that

the book I am reading has an entire chapter on that. A user

can then create a project, define a canvas, and design a

prototype based on predefined visual elements. As I am

interacting with the application, I am looking at the

generated requests in Burp Suite.

Whenever I click on a button or drag an element to the

canvas, I see simultaneous calls to both static and dynamic

endpoints. The former fetch static content such as

JavaScript, CSS, fonts, and image files, while the latter

reveals lengthy endpoints with many parameters. I feel

intimidated by the vast amount of data my mind needs to

process and understand. Plus, those static files irritate me.

There has to be a way to get rid of them! I tinker with Burp

Suite’s interface and find that I can hide files by extension

using the filter feature, great! Now, I can focus on only the

relevant things.

After a few hours, my mind starts picking up patterns, and I

gradually become familiar with the features, the URL

structures, and the parameter names. Now I feel

comfortable focusing on one functionality.

I choose the project creation feature because it is the first

step a user would naturally do in the nominal flow. Plus, it is

intuitive. So, I create a new project and look at the HTTP

calls in my web proxy. There is a POST request which uses

an anti-CSRF token. However, I notice that the application

uses the same value when I create another project. This

behavior doesn’t align with what I learned about mitigations

for CSRF[11]. The anti-CSRF should be unique per request. My

heart starts beating as I’m staring at the screen. It might be

my first vulnerability!

I try to think about the impact of this behavior for a while. A

user can automate the creation of projects to spam the

team, but I am not convinced. Meanwhile, a part of my mind

just wants to file a report on HackerOne. I can feel my heart

beating as I furiously start typing on the keyboard. I make

sure to explain how a static anti-CSRF token is not a good

practice. After about 10 minutes, I hit the submit button. My

report is now in the “open” state, waiting for the team to

pick it up.

It’s time to take a break.

The next Monday, I’m in my office doing some task when I

receive a notification from HackerOne; it seems that one of

the program members commented on my report. Indeed,

they recognize that the anti-CSRF token should be unique

per request. However, due to performance issues and the

minimal security impact, they are not considering a fix.

Therefore, my report is closed as Informative, which means

they won’t fix it.

I can reply to the comment and ask for a revision. But

before that, I want to revise my knowledge. I quickly open

Firefox and visit the OWASP documentation about CSRF. I

start reading anxiously.

In the first paragraphs, there is nothing new to me. Cross-

Site Request Forgery is a vulnerability that occurs when the

application allows state-changing operations, such as

creating a project in my case, without validating the

requester on the server. Therefore, I can prepare a simple

form and host it online. When the victim opens my page, the

web browser initiates a project creation request, along with

her session cookie.

As a solution, the server usually sends a hidden random

token along with the form, then verifies if it is the same

when the user sends the state-changing request.

I focus on the mitigation section and notice that the OWASP

recommends either a unique token per page or per session.

Damn! What I reported is not a vulnerability since the

program uses the second recommendation.

It doesn’t make sense to reply anymore; I am already

grateful they closed my report as informative. There is

worse, the NA status!

Shortly after, I receive another notification from HackerOne.

When I open it, I can’t believe my eyes! I can hear my

heartbeat getting faster as I realize that the program was

kind enough to honor my effort with $150!

I can’t believe it happened! I scored my first bug! Well, not a

real one, but my report got closed as valid. I feel an urge to

get off my chair and start dancing. If I were alone in the

office, I would have done it for sure.

It’s extraordinary how such an act of generosity can give a

massive push of confidence to someone barely starting in

bug bounty hunting, enough to make me stick to it. For that,

I am grateful.

However, I am sure it only happens once. Not all programs

would give free money. I need to find real bugs that I can be

proud of.

Since this is my first payout, HackerOne asks me to fill up a

tax form, which I do. The process is smooth as butter; all I

have to do is click on a link they provide that redirects me to

the online form. After I e-sign it, I can accept payments.

The next day, I receive the reward via PayPal.

I think I will focus on HackerOne; I loved the overall

experience, from signing up to receiving my first bounty.

Plus, I prefer to focus on building my reputation on one

platform. Maybe I can hack on other platforms in the future.

Although rewarding, the bounty is not the source of my

entire excitement. In fact, I proved that bug bounty is not a

scam but a model that works. Even though what I found is

not a bug, the reward gave me the assurance and the

motivation to stick to bug bounty hunting and earn money.

N/A, Informative, and Reputation

“We should not give up, and we should not allow the

problem to defeat us.” — a. P. J. Abdul kalam

My first bounty gave me a huge motivation that pushed me

forward. In my free time, if I am not reading the Web

Application Hacker’s Handbook, I am applying my

knowledge on bug bounty programs. The start is always

hard, but I enjoy it so far.

On one program, I am testing the authentication flow when I

notice that there is an oracle. In other words, I get different

messages depending on the existence of the username.

Therefore, I can enumerate valid account names. However,

the application locks a user out when a login brute-force is

detected. Consequently, I can lock arbitrary users out.

This issue seems legit to me. After all, the security risk is

more apparent and convincing than my previous one. So, I

write the report explaining in detail what’s wrong with this

account lockout logic. I first start with a summary where I

explain which feature and how it is vulnerable. Then, I

develop my idea in the description section. Then comes the

impact section, explaining that arbitrary users could be

locked out in a massive attack. Finally, I suggest they get rid

of the information leak that allows username enumeration in

the first place. A generic error would be enough.

After two weeks, my report gets closed as informative.

Reading the developer’s reply, I learn that they have a

process that detects and stops massive account lockout. At

the end of his answer, the developer politely asks me to

reopen my report if I disagree.

I resist the urge to reply and think for a moment. Obviously,

I can’t verify if there is any massive lockout. I would have to

target either real accounts or create enough dummy test

accounts. The former approach is unethical, and the second

is tiresome. Instead of engaging in a conversation that will

cost me time and effort with no guarantee that somebody

might accept my report, I prefer to invest it by looking for

additional bugs.

I file several reports here and there, but almost all of them

are closed as Informative. I feel hopeless and frustrated.

What am I doing wrong?

I pick a new bug bounty program to have a fresh start again.

I find it hard to stick to a bug bounty program once I send

them a report. At the same time, I always have to spend a

few hours trying to understand how the new application

works.

Here I am on this new web application, enumerating its

features in the hope of finding a bug. After spending some

hours going through almost all of them, I notice that the

application sends an SMS to the authenticated user. Looking

closely at the HTTP request, I see the phone number in the

POST data. When I change it, I surprisingly get an SMS on

my other phone!

Unfortunately, I cannot edit the SMS’s content, so all I can

do is spam arbitrary phone numbers with unsolicited SMS

messages. I run the same request through Burp Suite’s

Intruder to test if I can send many. To my surprise, I could

send around 500 SMS messages to my other phone.

I think there is hope for this issue to be accepted. If

spamming is not a security risk for the business, consuming

the SMS credit is. So, I craft a report using the same

structure as before. This time, I explain that they should

implement rate-limiting to stop SMS-bombing attacks.

The next day, I receive a shocking notification. Someone

from the HackerOne Triage team has closed my report as

NA! Which is short for Not Applicable. I rapidly scan the

reply to spot any valid reason. Sure enough, I come to know

that my finding is out of scope. I nervously visit the bug

bounty program’s policy to double-check. Indeed, SMS-

bombing is there, verbatim!

I quickly go to my HackerOne profile to list my reputation

history, and I notice that it has dropped by five points. I also

see that my Signal has fallen to around zero because of my

recent informative submissions, indicating a considerable

noise in my reports. That’s not good at all!

The Signal is a float number between -10 and 7. The highest

value means there is no noise because all the submissions

are valid. I need to get this value close to seven.

Focusing on improving my Signal will automatically improve

my reputation. To achieve this, I have to avoid sending Not

Applicable or informative reports. But how am I going to do

that? I can prevent Not Applicable submissions by

thoroughly reading the program’s policy and ensuring not to

test either known or out of scope issues. But what about

informative reports?

I look through my informative submissions to notice a

similar pattern. Almost all of them contain debatable issues;

they don’t have a clear impact.

If I want to reduce informative reports, I have to resist the

urge to report debatable issues. It is tempting to file a new

report whenever I find a weird behavior, but my experience

so far tells me that’s a bad idea. If I want to reduce my noise

and increase my reputation, I have to dig deeper and report

only the undeniable issues with an impact that no one can

deny.

Digging deeper requires me to focus on a single web

application, therefore one bug bounty program. So far, I

have been hopping from one program to another, hoping to

find low-hanging fruits. But since I am dealing with old bug

bounty programs, the chance is slim. I might get lucky

hitting a freshly updated feature, but I am not willing to take

the risk anymore.

Few weeks go by, and I can only say that my new strategy

has proved to be working. I am mentally prepared to spend

enough time on a target. Therefore, I am not chasing low-

hanging fruits but looking for hidden gems that bug bounty

programs will undoubtedly accept. It also allows me to apply

what I am learning from the Web Application Hacker’s

Handbook and the reports I read from HackerOne’s

Hacktivity.

One day, I am testing a search feature of a web application.

Upon sending my input, I notice that it gets reflected in the

resulting page. That’s a good candidate for Reflected XSS[12].

Unfortunately for me, it seems that the developer has done

a great job since the output is encoded correctly. Therefore,

I can’t trigger any XSS.

However, while looking around and tinkering with other

features, I noticed some calls to endpoints which end with

the CSV[13] extension. These return inline CSV results, but

there are no parameters to control. What if I try the CSV

extension on the search feature? Maybe the back-end server

handles both.

To my surprise, I see a prompt on my web browser page

using the JavaScript payload prompt(document.cookie) . Hell yeah!

This is what I call a real bug that I am sure will be accepted.

The next day, I am pleased to know that the program has

accepted my report and rewarded me with a bounty.

The duplicate nightmare

“The person who follows the crowd will usually go no further

than the crowd. The person who walks alone is likely to find

himself in places no one has ever seen before.” — Albert

Einstein

After about a month, I finally finish reading the colossal

book. I couldn’t grasp all the concepts and techniques, but I

have noted an exhaustive checklist I can go through

whenever I need to. I can’t believe how much I have learned

so far! Besides, I have directly practiced some of my

knowledge on real targets.

I also developed the habit of reporting only issues with a

real and concrete impact, allowing me to increase my signal

and reputation on HackerOne slowly. I feel that I am

progressing, slowly but surely.

One night, I am hunting for bugs on one bug bounty

program. I learn that the application uses AngularJS for the

front-end. My reflex tells me to try Client-Side Template

Injection vulnerabilities[14].

This vulnerability exploits user input that ends up in a

template that the front-end technology, such as AngularJS,

uses to render the page.

So I start injecting the following XSS payload

{{constructor.constructor('alert(input)')()}} here and there while

inserting the field name as input for the message. That way,

if a popup triggers, it will show the name of the vulnerable

field in the message, pretty convenient!

Suddenly, I get a popup window with the string “profile

name,” indicating that the payload from the profile name

user input has triggered the exploit. I can hear my heart

beating as I try to reproduce the issue once more. Indeed, it

is vulnerable when someone visits my profile page! I quickly

craft a report and send it.

The next day, the triage analyst closes it as duplicate.

When I find a valid but duplicate bug, I won’t get paid, and I

won’t receive the full reputation points. All the fame will go

to the hunter who was the first to report it.

What increases my frustration even more is that all my

recent submissions have been closed as duplicates.

Just as I thought that I have finally understood the game,

this duplicate nightmare has made everything much harder.

On the one hand, I have to avoid Not Applicable and

Informative issues. On the other hand, I have to be the first

to find a valid one. How to avoid duplicates when every

decent hunter looks for known issues like XSS, CSRF, Open

Redirects, and others?

Now I am starting to question the first impression I had

when I first heard of bug bounty hunting from my friend.

Indeed, this industry doesn’t generate easy money!

If I want to avoid duplicates, I need to be the first to report a

valid issue. If I want to be the first, I have to hunt for some

obscure, novel, and less-known bugs. Otherwise, I need to

find bugs in hidden places that most of the crowd is

overlooking. The first approach requires me to learn and

master more vulnerabilities, while the second approach

requires me to master the art of information gathering and

look for hidden places. I am leaning towards the second

approach. I’ve learned enough vulnerabilities for now, and I

need to practice.

I suddenly understand why I scored the Reflected XSS on

the CSV endpoint! While the exploitation is straightforward,

no one has thought of testing it because it required thinking

outside the box. I believe this is one key element I should

keep in mind in my future hunting. Think outside the box!

There is also another way to test for the least traveled road,

and that is premium features. During my hunting, I came

across web applications that have more features in paid

plans. I bet a few hackers take the extra mile. Unfortunately,

I am currently one of them.

Another approach would be to find new assets. So far, my

focus was on the flagship web application of the bug bounty

program. However, any company has many other assets,

such as supporting software for accounting, HR,

engineering, monitoring, and the like. There are also test

environments that usually have missing security measures.

Some of them might be easy to hack.

A great way to find these assets would be to discover

subdomains.

I remember Jason’s talk where he talked about the road less

traveled. It suddenly makes sense now! I thought it was

overkill, and I was wrong! It is undoubtedly a necessity.

From the videos I saw so far, there are many tools to do

reconnaissance. When I started doing bug bounty hunting,

the most famous ones were sublist3r[15] and dnsdumpster[16].

Fast-forward to the future, new tools emerged, and I found

myself adopting amass[17], which is now supported by the

OWASP[18]. These tools use various techniques to discover

subdomains, such as public data available in search

engines, certificate transparency [19]logs published by

Certificate Authorities, or even brute-force based on a

dictionary!

Armed with amass against a top-level domain, I find many

subdomains. One of them is kibana.target.com. I visit it on

my web browser, but I see nothing on port 80. I google the

word “kibana” to learn it is an open-source data

visualization software that collects data from

Elasticsearch[20] and displays it in charts and graphs.

Besides, it listens on port 5601 by default. So, I append the

port number to the subdomain. Here I am, looking at a

dashboard filled with data about the target’s internal

systems! No authentication is required. Everyone is

welcome!

I quickly write a report, and the program fixes it after a few

hours.

This bug was a low hanging fruit waiting for anyone with

decent enumeration skills to find. Yet, it was not a duplicate.

Sometimes, luck plays in your favor, and you are the first to

come across it. Could that be due to a recent firewall

configuration that suddenly opened the door to Kibana? I

don’t know. All I know is that subdomain enumeration paid-

off.

I wonder how successful I would be at avoiding duplicates if

I master the art of reconnaissance. That could open the door

to more bugs, which will allow me to increase my

reputation, improve my signal, and earn more money!

On the weekend, I meet Julia around a coffee and tell her

about my progress.

— “Congratulations! You have gone a long way since we last

spoke about bug bounty”, she says. Then, she adds: “Now,

it’s time to aim for those juicy private programs.”

— “Wait, private what? What’s this? A secret world within

bug bounty?” I astonishingly ask.

— She smiles and answers: “These are programs that you

can’t hack until you get an invite from HackerOne.

Therefore, there is a limited number of hackers. Besides,

some of them have a good scope. Do you want to know the

best part? They generally tend to have higher reward

amounts”.

At the end of our conversation, she adds: “I am sure you will

shortly receive one.”

Reconnaissance and private hacks

“Time spent in reconnaissance is seldom wasted.” — John

Marsden

My updated strategy seems to be working like a charm. I am

doing subdomain enumeration before jumping into the main

web application. I am resisting the urge to file reports which

would likely get closed as informative, such as user

enumeration, banner grabbing, and other shallow things.

Therefore, I am finding more valid bugs. Only a few of them

are duplicates.

I am now aware that reconnaissance is a necessary skill for

a successful bug bounty hunter. But so far, I’ve been doing

subdomain enumeration only. If I can find more resources

using other techniques, I bet it would open the door to more

potential bugs.

For example, finding mergers in wide-scope programs will

allow me to expand to new top-level domains, which will

lead to gathering new subdomains, hence new and under-

tested assets.

Another example would be gathering a list of employees.

While phishing is always out-of-scope in the programs’

policies, having a list of employees would still help me build

a custom wordlist or prepare a list of potential accounts to

use during brute-force.

A third example is looking for PDF, images, Excel

spreadsheets, and Word documents. Using tools such as

Foca[21], I am surprised by the kind of information stored in

their metadata. In a recent security assessment in my

company, a colleague collected public files about the

company and gathered full names, emails, internal IP

addresses, software versions, and many more.

I am looking around on the internet, trying to find any tool

to help me perform broader enumeration tasks, when I

come across recon-ng[22]. I learn that it is an information-

gathering framework. And it looks promising! Think

Metasploit[23] but for reconnaissance.

I install it on my Linux machine using the command apt-get

install recon-ng . Then, I run it using the command recon-ng .

Easy!

I am already familiar with Metasploit, and the look and feel

are the same; I can create a workspace for each bug bounty

program to keep things organized. I can enumerate

subdomains, collect emails, resolve IP addresses, find

people accounts on various known websites such as

LinkedIn, look for any credentials leaked in public websites,

and many more! I can even generate HTML reports that

contain all the findings!

Whenever I start on a new program, I run this tool and

collect so much data about my target. The joy that comes

from collecting such public data is so addictive that I spend

too much time doing recon. Unfortunately, I lose valuable

time that I’d rather spend on testing.

Indeed, too much recon is counterproductive. I need to

increase my recon efficiency but avoid spending too much

time, especially during the initial phase. My ideal goal would

be to collect as many resources as possible in the shortest

amount of time.

To achieve this, I have to automate the process and start

active tests as soon as I collect an initial set of targets.

Recon-ng allows for easy automation. I can prepare a file

containing all the operations I want to perform, use it as a

resource with the command recon-ng -r file and grab a cup of

coffee while the information gathering magic happens.

I can now perform quick but decent reconnaissance, with a

predefined set of checks under minutes, which is a massive

improvement for my bug bounty hunting methodology.

Combining reconnaissance with my web application hacking

skills against public programs that pay little to no bounties

allowed me to find valid bugs and increase my reputation.

Then, one morning, it happens!

I receive a notification from HackerOne. When I open it, I

can’t believe my eyes! It is an invite to hack on a private

program.

I can feel the adrenaline rush, but there is nothing better

than a delicious breakfast with my family on a sunny

Sunday. Bug bounty hunting can wait for an hour, or maybe

two.

After spending some quality time with my family, I start

hacking; I launch my recon script and perform some manual

work in the meantime. After a few minutes, I have a list of

subdomains, IP addresses, and contact information.

Unfortunately, recon-ng doesn’t find credentials this time,

but I can see some emails I can test on login portals.

I then use Nmap to find alive servers and enumerate open

ports on each subdomain and IP address.

I spend a few days on this program without finding anything

worth reporting. Shortly after, I receive another private

invite! It seems that my reputation has picked up

HackerOne’s interest. I gladly accept it and repeat the recon

and the hacking process for the new program.

The curse of burnout

“Every great and deep difficulty bears in itself its own

solution. It forces us to change our thinking in order to find

it.” — Neils Bohr

I have several invites now, and I am so excited that I keep

jumping to new programs. Who can resist a new invite?

Especially when the program has barely launched!

Unfortunately, I am violating one of my rules, which is to

focus on one program, or two at most. Jumping disturbs my

focus. When I lose my focus, I can’t find valid bugs. As it

turns out, getting into private programs has its own

challenges.

Besides, I have been hacking extensively in recent months,

and my routine has been tight; I would arrive home after

work and immediately start hacking for hours until I am

exhausted. I take about an hour for dinner, then continue

hacking until midnight. Then go to bed. Wake up, go to

work, come back, hunt for bugs, and repeat. I even dream of

bugs!

On the weekends, I used to go out to the cinema with my

friends, or travel with my family. Instead, I am recently

obsessed with bug bounty hunting, and all my weekend

goes on the couch, in front of the keyboard.

I have found a few valid bugs, but not enough regarding the

time I have invested. Meanwhile, whenever I open my

Twitter feed, I see tweets from many hunters who find bugs

with generous rewards.

I am starting to feel exhausted; I don’t sleep well, I don’t

entertain myself, rarely see my friend, and I spend less time

with family. Most of my time goes between work and bug

bounty hunting.

Today, I arrive home from work but can’t go anywhere near

my computer. I don’t feel the desire to hack anymore. My

self-confidence is so low that I can’t even open Twitter. It is a

strange feeling to hate doing something I always loved.

Whenever I think of hunting for bugs, an odd negative

feeling triggers immediately. I picture the amount of time I

would be investing without satisfying rewards. By rewards, I

mean...well, money!

Perhaps it is time to take a break for a while. With some

distance, I might be able to see things clearly to solve this

odd situation.

I have neglected my preparation for the OSCP since I started

doing bug bounty hunting. I guess it is time to get back to it.

I thought hunting for bugs would help me prepare for the

certification, but I was wrong. Apart from web application

hacking, there are no similarities between the two.

I focus about a month on rooting some machines from

hackthebox.eu, which Julia gave me initially. Then, I

purchase the three-month package and provide the OSCP

course my full attention. In the first two months, I solve all

the course exercises and hack the entire lab to make sure I

can exploit all the vulnerabilities.

However, I notice that my approach to web hacking has

changed; Most of the applications in the lab are vulnerable

to known exploits. However, I am trying to enumerate the

features looking for bugs like I do in the real targets. It took

me some time to switch back to the CTF hacking style.

Damn! Even web application hacking is different!

After rooting all the machines, I book a date for the exam.

When the day comes, I wake up, take my breakfast, and

lock myself in a quiet room. It’s time to hack!

Although I rooted the first two machines quickly, I am losing

considerable time in the third one. It is tough as hell! It

takes me the entire afternoon to finally become the

administrator. I have one hour left, and I still need 5 points

to pass. However, I have no lead.

Even though I took a good launch and kept myself hydrated,

I couldn’t stand a full day of hacking. I am so exhausted!

After 24 hours, I fail to collect enough points. Full of

disappointment, I go straight to bed.

The next day, I book the retake for the next month.

All the machines are new. Luckily, I succeed this time and

root all the boxes. I had to think outside the box yet keep it

simple. I guess the only thing I was doing wrong in my first

attempt was overthinking easy steps.

With the confidence this certification has given me, I can go

back to hunting for bugs. However, I can’t fall into the same

mistakes once again. Indeed, taking a break has helped me

put things into perspective. I think I have many problems I

need to address before going any further.

The first problem is the lack of focus because of too many

invitations. From now on, I won’t accept all of them. Only

those that satisfy my criteria will end up on my hacking list.

I hope it will help me focus on a few high-quality programs.

HackerOne provides some key metrics to help me decide.

The first one is the minimum bounty. I won’t accept

programs that offer below $100. Besides, the time to

resolution should be less than a month, which has many

advantages. Firstly, it will reduce the probability of

duplicates because the lifetime of the bug will be shorter.

Secondly, since most programs pay bounties after fixing

issues, I will luckily get paid within a month. Finally, my

reputation will grow fast because the team would handle my

submissions quickly.

The second metric is the scope. I would prefer programs

with bigger scope. This way, I guarantee to have always

something interesting to work on, which will prevent

boredom and keep me engaged with the program.

The third metric measures performance within the last three

months. It represents the percentage of the reports that

have met the program’s claimed response standards. This

tells me whether the program truly honors the time-to-first-

response, triage, bounty, and resolution. I won’t accept any

program that has less than 80%.

Lastly, I will make sure that the program aligns with my

values, which is one of the great things I love about bug

bounty hunting; I have the freedom to choose my clients,

which a typical employee generally lacks. Can you tell your

boss that you won’t work on a project because you don’t like

it? Well, I can tell it to HackerOne without risking my job.

Figure 1: Although this program meets the response standard by 98%, the

time to resolution is not acceptable for me.

The second problem I face is stress. When I am stressed, I

don’t enjoy what I am doing. I lose focus and motivation. At

least, I have to reduce it if I want to enjoy hunting for bugs.

One of the sources of stress is my Twitter feed. It is full of

depressing tweets of some bug bounty hunters bragging

about the money they collect from the vulnerabilities they

find. I don’t learn much from them because they don’t

contain a write-up explaining how they found those bugs.

One solution would be to unfollow them all, but since some

of them often tweet valuable content, I might miss a few

tips. So how am I supposed to clean my feed?

It turns out that when they find a valid bug, they usually

generate a tweet directly from the bug bounty platform. On

HackerOne, for example, the tweet starts with “Yay! I was

awarded”. On Bugcrowd, it contains “for my Submission on

@Bugcrowd”. Therefore, I can configure my Twitter feed to

blacklist such expressions using the muted words feature.

Sweet! Now my feed is less depressing. I considerably

reduced the noise!

However, even with a cleaner feed, I notice that I still get

jealous when I see tweets that mention write-ups of some

findings. What’s wrong with me?

It turns out that whenever I see such tweets, I tend to

compare myself. Since I am the losing part, I am

continuously feeling low, which affects my self-confidence.

I have to switch my perspective. If someone publishes a

finding, my first reaction should be gratitude, not childish

jealousy! Then, I should take the time to learn something

from the write-up. Maybe there is a new technique that I

have never known. Or perhaps there is a new perspective I

have never explored. In short, I need to be open to learning

from the community continually. There is always something

new to learn!

There is yet another problem related to what I have

discovered so far. I focus on earning money. That explains

why I get jealous of other bug bounty hunters. So far, I have

read an entire heavy book, watched YouTube videos, and

read blog posts about bug bounty hunting. However, I have

always been aiming at money, especially when I started

earning some.

What if I switched my goal from money to learning? That

would eliminate all the frustration I get when I don’t find

bugs. At the same time, I would hack for days and still enjoy

it because I do it for fun. With time, I would keep challenging

my capabilities and learn new skills.

Ultimately, the money will follow. But I shouldn’t hack for it.

I already have a full-time job that pays my bills.

With these problems addressed, I would hopefully regain my

motivation and reduce stress. However, I am sure it won’t

be enough. Motivation fluctuates, and I simply cannot gain

momentum without consistency. Throughout this journey, I

noticed that I had the most favorable results when I was

working consistently. Whenever I take a significant break,

my mental checklist gets weaker. In other words, I overlook

some tests, and I forget some steps in my methodology,

which means missing critical areas in my target.

If I want to ensure consistency, I need to set a goal and be

disciplined. I don’t want to focus on money because I have

learned how it negatively affects my stress levels. Instead, I

will focus on my reputation. What if I aim for a thousand

points in six months? Would that be achievable? I grab a

pencil and a piece of paper to figure that out.

I visit the reputation page on HackerOne. Each valid report

gets seven points after triage. Then, depending on the

severity, it gets additional points. In simple terms, a

medium, high or critical severity report gets 15, 25, and 50,

respectively. The average is 30 per report. I won’t report low

severity bugs to avoid any chance to get my submissions

closed as informative. If I focus on a few programs and

perform in-depth analysis, I will likely find interesting bugs.

When I divide 1000 points by 37, I get around 27 reports

that I should send within six months. Which means about

five valid submissions per month.

That sounds realistic. However, I need to stick to it. I quickly

grab my phone and write a note on my home screen that

says: “5 reports per month”. Doing this would help me stick

to it. From experience, whenever I set a goal, I quickly forget

about it in the following days. Since I grab my phone

hundreds of times per day, this trick should be a good

reminder.

I am still missing something

“Most of the important things in the world have been

accomplished by people who have kept on trying when

there seemed no hope at all.” — Dale Carnegie

It is now two weeks since I set my goal, and I am not

progressing a bit! Not that I don’t find bugs, but I don’t hack

at all! Many distractions have come across my path.

One of them is travel. It’s hard to work when I am supposed

to spend quality time with my family. However, I am not

upset. Family comes first.

The wallpaper on my phone keeps reminding me, however.

The second and biggest distraction is a side hustle job as a

Security Analyst. Along with a full-time job, I can’t spend

what remains of my time and effort doing another

cybersecurity activity.

I should have seen this coming; the side hustle job blocked

my bug bounty hunting activities for a while. That is until I

quit after about a year.

Strangely enough, I couldn’t hack, even with the free time I

have! There is something wrong with me for sure. Why does

this happen to me?

For a while, I sit with myself, trying to understand the cause

of my trouble, which seems to be subconscious. Shockingly,

the reason was right in front of me all along. I can’t hack

programs I already tested!

When I think about the previous targets where I failed to

find vulnerabilities, I suddenly feel a negative feeling

preventing me from trying harder. I guess I am afraid of

falling into the same failure again, which explains why I had

kept jumping from one program to another since the

beginning. Now that I have decided to focus on a few

targets, my mind refuses to hack.

This is not good at all. This issue is jeopardizing my entire

plan. If I continue like this, I will have to continually keep

looking for new programs, which contradicts my strategy to

stick to a few.

When I try to remember what I have tested in those

programs, I know I have done open-source intelligence, such

as subdomain enumeration, then focused on one or two

assets. However, I can’t remember what I did for each of

them and what targets I haven’t tested yet.

Could that be related to my mysterious negative feeling? I

think about it for a while. Indeed, it does make sense! If I

don’t take notes, I lose my progress.

In fact, my mind remembers the last hunting session, which

translates to a failed experience. When I want to come back

the next day, or the next week, I only remember my failure!

Had I documented my progress, I would have broken that

feeling. A quick look into my notes would give me the next

lead to follow.

I cross my fingers, hoping this would work. To test it out, I

will start fresh, but only this time in order to bypass my

mysterious negative feeling. For that, I need new invites,

which means I must find bugs in previous programs. Or

must I?

Luckily, HackerOne has just published the hacker101

educational website, where hackers can find vulnerabilities

in many challenges. After accumulating enough points, they

can receive private invites.

Solving some challenges would also be an excellent

opportunity for me to boost my ever-low motivation and

self-confidence. Plus, I will remember the old days when I

enjoyed solving challenges on the root-me platform.

I solve multiple problems in one sitting, enough for me to

earn a private invite. Sure enough, I receive one the next

day!

Time to roll the sleeves up and focus on this new program.

Not the same mistake again

“Great losses are great lessons.” ― Amit Kalantri

It is only the first week of hunting on this new program, and

I have already found some bugs on the only web application

in scope. It seems that the new strategy is working quite

well; I am trying my best to test all the features deeply. I

start from transversal security controls such as CSRF and

session management, down to access control for each

endpoint and injections[24] for each user input. Along the

way, I don’t forget to document my progress; I certainly

don’t want to fall into the same situation as before.

Moreover, I have access to the source code, which means I

can follow a white-box approach. It is an excellent

opportunity to test some of the static analysis tools and put

my manual code review skills into practice. I hope I have a

sharp eye to spot some bugs. Otherwise, it is never too late

to learn new tricks.

Looking through the source code, I realize that it doesn’t use

any web application framework, which means developers

must implement many security controls by hand. For

example, they would need to sanitize user input, implement

anti-CSRF, secure SQL[25] queries, all manually. Therefore,

there is a higher chance that a few hidden bugs have fallen

under the cracks, waiting for me to uncover them.

I clone the code repository into my local machine and start

searching for SQL queries using grep , a command-line tool

available on Linux. For now, I am interested in SQL

injections[26] because I notice a database configuration in the

source code. Plus, such vulnerabilities lead to high or critical

severity bugs.

My intuition was right! After about an hour, I find a user

input inserted directly into a SQL query without any

sanitization. Great! I found a lead. I hope I can reach the

vulnerable code from the user interface.

Reading through the adjacent lines of code, I realize that the

vulnerable part resides in a conditional block that is never

directly reached from the user interface. That explains why I

haven’t been able to find it using the black-box approach.

To execute it, I have to send a GET request to a specific

endpoint. Since this is a server-side bug, I can simply run a

curl command or replay Burp Suite’s request.

I grab Burp Suite and start playing with the endpoint. Lo and

behold, I get a valid response from the server, meaning that

I can reach the vulnerable code.

I tinker with the vulnerable user input until I finally trigger

the vulnerability! Trying ‘+or+’1’=’1 gives a list of results,

while ‘+or+’1’=’2 returns an empty list, which means this is a

Blind SQL injection; I can extract data by asking the

database engine a series of questions that produce true or

false answers.

The next day, the program’s team rates it as a high severity

issue, and I get fifty reputation points because my bug is

ranked higher than the average.

The following days, I get some new private invites. This

time, instead of blindly accepting them, I quickly pass them

through my checklist, and only one of them makes it to my

hacking list. I add it to my notes and keep working on my

current target. I don’t want to switch to the new program

until I have explored every corner of the current one.

More days come by, and my new strategy seems to have

paid off. In only one web application, I have found a total of

eight vulnerabilities with a severity ranging from medium to

high. I am catching up on my goal, and my self-confidence is

recovering.

I think it is time to move on to the new program, which

seems to have a much bigger scope. It should keep me busy

for a while.

Achieving my goal

“Hard work works harder than luck!” ― Germany Kent

It is Saturday in the morning. I grab my laptop and start

doing reconnaissance. After a brief subdomain enumeration

to assess this new program’s digital presence, I focus on the

main web application since most of the other subdomains

are an exact match. I conduct a preliminary analysis to test

the waters and get a first feel of the asset’s maturity.

After about ten minutes, I notice a weird 403 HTTP response,

forbidding any CSRF attack against state-changing

endpoints. What gets my immediate attention is the

absence of any indication of anti-CSRF measures; there is no

token and no validation of neither the Origin nor the Referer

HTTP headers.

At this point, I have to decide if I should note it and proceed

with my shallow tests or stop everything and focus on that

behavior. From experience, whenever I come across strange

comportment, there is a bug waiting for me to uncover.

Besides, if I find something, there is a higher chance that

the same bug will be everywhere in the application. That’s

an immense potential that I don’t want to miss.

I decide to give this lead some time. If I don’t find anything

in the next hour, I will move on.

I tinker with every HTTP header and parameter from the

Burp Suite’s CSRF proof-of-concept and replay it to

understand what exactly causes my attack to fail compared

to the original request. After a while, I finally find it! There is

a static header missing in my PoC. To add it, I’d have to use

JavaScript in an AJAX[27] call. I am not sure if I can do this. I’d

have to check if I can send requests from arbitrary origins.

To my surprise, the web application allows arbitrary origins

to send AJAX calls, which is a classical CORS[28]

misconfiguration. I quickly alter the PoC to use JavaScript

and add the missing header. Here is how it looks like.

When I send it, I can’t believe my eyes; the attack

succeeds! I have just uncovered a bug from a simple

observation of a weird behavior of the application!

I quickly file a report and cross my fingers that it is not a

duplicate. Anyone with a keen eye and a decent experience

can find such a bug.

I wait for about two days. Then I receive an update from the

team. My heart is beating as I open the email. Oh! My report

is not a duplicate! What a tremendous luck!

I open the web application to analyze the bug in-depth. After

some time, I conclude that the impact matches my initial

hypothesis. The bug is almost everywhere! But for some

reason, I cannot reproduce it on a few features. I infer that

each functionality might have its security controls against

CSRF and CORS misconfigurations. Maybe each one is

hosted on a separate microservice, and few of them have

proper security measures against my attack.

However, what I can attack is already enough. It turns out

that a simple visit to my malicious page can ruin the

victim’s entire account; I can manage all the victims’

resources, take over their accounts, and even spread my

exploit to their friends.

I file a separate report for each vulnerable feature, which

results in about twenty submissions in total. After about a

month, each one of them got triaged and rewarded.

Meanwhile, I kept deeply poking around the same

application, which resulted in a few other vulnerabilities. I

am now ahead of my scheduled plan.

Today, I open my account on

HackerOne to check my last resolved report. When I have a

look at my performance statistics, I can’t believe my eyes! I

finally crossed a thousand reputation points!

Figure 2: Reaching 1K in reputation

I can’t describe the situation! I feel a satisfying sense of

accomplishment, but I am staring at the screen in disbelief.

Meanwhile, I keep repeating to myself: I finally achieved my

goal!

The end?

“Every new beginning comes from some other beginning's

end.”

― Jenna Evans Welch

Throughout this fascinating journey, I learned so many

things.

Firstly, bug bounty hunting is not easy. It is a challenging

marathon that you should take seriously as any other job. If

you don’t enjoy constant learning or get afraid of being

challenged all the time, you should look for something else.

Secondly, hunting for bugs in real targets is different from

hacking in CTFs; While challenges taught me how to exploit

individual vulnerabilities, bug bounty hunting requires

broader technical expertise. I learned that focus,

reconnaissance, and in-depth testing are vital ingredients

for reducing duplicate and informative submissions.

Thirdly, bug bounty hunting taught me how to adapt; I

learned how to shift my mindset from looking for money to

harvesting knowledge. Besides, I learned how taking

organized notes, setting achievable goals, being consistent,

and having discipline is as crucial as technical knowledge. I

can confidently confirm that these soft skills make the

difference between an amateur and a professional bug

bounty hunter.

Finally, bug bounty hunting allowed me to discover more of

my flaws, push the limits of my capabilities, and be a better

version of myself.

Now it’s time to celebrate my achievement with my family,

then think of my next goal.

Appendix A: Approach a new

target

This checklist contains explained steps to get you started

quickly when you first engage with a bug bounty program.

Don’t forget to change the keyword DOMAIN to match your

target’s domain name throughout this checklist.

1. OSINT

Open-source intelligence is the process of gathering publicly

available data about your target, such as subdomains,

contact information, exposed files and credentials, etc.

There are a lot of sources to use when you enumerate. Here

is a list of useful ones, but feel free to explore other tools on

your own. The best way to learn reconnaissance it to

practice with as many tools and techniques as possible,

then adopt the ones that suit your preferences and taste.

For example, if you like to use the terminal, you will

naturally prefer command-line tools.

1.1. Google Dorking

Uses Google operators to find interesting bits of information

about your target. Some examples are:

Google dork Description

site:sub.DOMAIN

site:.*.DOMAIN

site:.*.*.DOMAIN

Gives you only the

pages under a

specific domain or

subdomain using

the site operator.

You can also

enumerate

subdomains using

wildcards. You can

even find

subdomains in

deeper levels

using asterisks.

site:DOMAIN AND (ext:xslx

OR docx OR pdf)
You can combine

multiple operators.

For example, on

the left is a query

to find all indexed

PDF, Excel and

Word documents

hosted on

DOMAIN .

The Google Hacking

Database

(https://www.exploit-

db.com/google-

hacking-database)

This is the

database of

Google dorks. You

can search by

keyword or

category.

For example, if you

have found that

the target uses

Java, search on the

database and

you’ll find results

such as

intext:jdbc:oracle

filetype:java , which

returns all Java

files that are

known to contain

passwords.

https://www.exploit-db.com/google-hacking-database

Figure 3: Google Hacking Database results for the keyword "java"

1.2. File metadata

Foca is a great tool for analyzing meta-data inside the files

of your target. Say you have found many PDF files using

your previous Google dorking technique, you can leverage

Foca to extract meta-data from these documents, like the

author, the location, the software being used, the date of

the creation, sensitive data, etc.

This data is valuable when you want to understand more on

the technologies and the users of your target. Foca can also

accept a domain as input and searches Google, Bing and

DuckDuckGo for indexed files, then performs meta-data

extraction and analysis.

The downside is that it works on Windows only, so you may

want to use a virtual machine or a dual boot if you don’t

have Windows as a primary OS.

1.3. Enumeration using theharvester

TheHarvester[29]

allows you to gather a list of emails, subdomains, IPs and

URLs from public sources for a particular domain. It is

present on Kali Linux, but you can easily download it on

other Linux distributions. To install it using Docker, run:

You can use it as

follows to gather data from all sources:

1.4. DNS Enumeration

DNS enumeration allows you to understand where your

target is located and what third-party services it uses. If

there are any misconfiguration, you might even take over a

subdomain or perform DNS zone transfers[30].

To grab data

about the target's DNS, you can use either Dig. Run the

following commands:

Additionally, you

can use fierce to do in-depth DNS enumeration and

automate checks for neighbor IP addresses and zone

transfer attacks. Learn how to use all its capabilities using

the GitHub page[31].

1.5. Subdomains enumeration

Enumerating subdomains is a crucial step in your

enumeration phase. It allows you to gather a list of potential

assets and understand the naming convention. Since many

targets use the same public domain for internal services,

you can also enumerate internal hosts. Then, look for ways

to reach them, such as abusing a VPN entry.

There are many techniques to enumerate subdomains.

1.5.1. Certificate transparency using Crtsh

Go to https://crt.sh.

Then, input %.DOMAIN to get a list of subdomains. You can use

this one-liner to automate the process, inspired by snwlol’s

script[32].

Make it

executable and run it.

1.5.2. Amass

This is the reference tool for subdomain enumeration so far.

It is now part of the OWASP projects.

https://crt.sh/
https://github.com/snowoverride/crt.sh/blob/master/crt.sh

I prefer to use the Docker version.

The installation steps can be found[33] on Github. The user

manual[34] contains all what you need to get started.

Once you install it, the most basic command for subdomain

enumeration is: amass enum -d DOMAIN

1.5.3. Brute-forcing subdomains

You can use amass with the -brute option like this: amass enum -

brute -d DOMAIN

You can also use altdns to generate a list of potential

subdomains, and massdns find valid ones using brute-force.

Run the following

commands to set them up:

You can then use

the following workflow to get a greppable JSON file that you

can parse afterward.

Note: The best talk, in my humble opinion, about

subdomain brute-forcing is Frans Rosen’s[35], it covers not

https://github.com/OWASP/Amass/blob/master/doc/install.md
https://www.youtube.com/watch?v=HhJv8CU-RIk

only brute-forcing, but also how to test for NXDOMAIN,

SERVFAIL and REFUSED DNS responses, plus a bit more. I

highly recommend it.

By now, you will have subdomains, emails and hopefully

juicy files and credentials. It’s time to find the running

services.

2. Probe live assets

In this step, you will filter subdomains and IP addresses that

have some running services that you can hack.

2.1. Nmap

Run the following command to find live servers. subdomains.txt

file contains the list of potential subdomains you gathered

from the previous steps.

nmap -sn -iL subdomains.txt

2.2. Httprobe

You can use

Tomnomnom’s httprobe[36] tool if you are just interested in

web applications. Run this command:

You will get a list of HTTP and HTTPS assets that you can

start hacking.

Note: You can use custom port numbers. Read the

documentation of the tool on the GitHub page.

2.3. Screenshot the web applications

When the number of subdomains is significant, it is not

practical to manually visit every web application. I use

aquatone[37] to quickly spot interestingly looking assets.

https://github.com/tomnomnom/httprobe

In the following

command, aquatone will probe web assets based on a large

sample of potential ports and output the results into the

specified folder.

3. Port scanning

The scanning in the early phases of enumeration doesn’t

help much. It takes time and generates a lot of traffic for low

returns. Therefore, it won’t take a big portion of this guide.

Note: You can use the search engine shodan.io to get a list

of open ports without performing port scanning.

3.1. Fast Nmap TCP and UDP scans

To find running services on the twenty most famous TCP

ports, run:

nmap --top-ports 20 -iL subdomains.txt

To find open UDP ports for known services, such as SNMP,

POP, TFTP, run:

nmap -sU -p990,110,69,161 -iL subdomains.txt

3.2. Masscan

Useful for a large number of IP addresses, but be careful; It

generates a lot of traffic on your target. Don’t do it unless

the client allows you.

To use masscan, you first need to resolve the subdomains

list you found. Use the following one-liner:

Then, use masscan to scan all ports:

masscan -p0-65535 -iL ips.txt --rate 100000

By now, you will have an exhaustive list of web applications.

The next appendix will guide you through the web

application hacking process.

Appendix B: Web hacking

checklist

This is a list of checks you can perform against web

applications. It focuses on enumeration and web application

testing.

Note that you have to change the SERVER keyword to your

target server.

1. Scan the running services

Before focusing on the main web application present on the

subdomain or IP address, it is always a good idea to

enumerate other potential services running on the same

server. You might find other under-tested web applications.

To scan all TCP ports of the web app and output the results

into xml, greppable and Nmap formats, use this command.

nmap -p- -oA output SERVER

2. Directory enumeration

Once you find a web application, you can perform directory

brute-forcing using Nmap, run: nmap --script=http-enum TARGET -

pPORT

You can also use Wfuzz with the top disallowed robots’

wordlist from the SecLists Github project[38].

Run the

following command to install and run Wfuzz. Note that you

should keep the keyword FUZZ . Wfuzz uses it to know

where to fuzz.

https://github.com/danielmiessler/SecLists

3. JavaScript enumeration

JavaScript files are a treasure trove for any bug bounty

hunter, especially if the application uses a front-end

technology, such as AngularJS or React. You can find

sensitive comments, passwords, endpoints and other data.

LinkFinder is a tool that allows you to extract links from

JavaScript files.

Run the following

commands to setup LinkFinder.

Then, use it with the command: python3 linkfinder.py -i WEB_PAGE|JS_LIST -o

result.html The tool will parse the HTML page, or a file containing

a list of JavaScript files and give you the HTML output

results.

You can paste the

following JQuery code inside your web browser's console to

extract the list of URLs from the HTML report.

One way to use them would be to copy-paste the list into

Burp Suite’s Intruder and see if you hit a new resource.

4. Parameter discovery

Parameth is a tool that allows you to brute-force parameter

names, which helps you to discover hidden features. You

can also use Burp Suite’s Param Miner extension[39].

Run the following

commands to install and use Parameth. More options can be

found on the GitHub page[40].

https://www.youtube.com/watch?v=IYk7-xvOMOo

5. Enumerate the web app

technologies

Understanding the web application technologies helps you

tailor your tests, focus on key vulnerabilities, and search for

specific files using Google dorks. I like to use Wappalyzer,

which fingerprints the technologies being used by the

application whenever you visit a web page.

To use Wappalyzer, install the extension on your favorite

web browser. A new icon will appear in the top-right corner.

When you visit a web page, you can click on it and learn

what this application is using.

Figure 4: HackerOne uses Ruby on Rails and React

If any known software/framework is used, use tools like

searchsploit[41] to discover known vulnerabilities and their

public exploits.

By now, you should have a list of technologies, endpoints,

files with potentially sensitive data.

If you are lucky, you have usernames, passwords and

exploits for outdated technologies. You can use them to

directly exploit the web application. Otherwise, it’s time to

roll up your sleeves and test the application directly using a

web browser and a web proxy, like Burp Suite[42] or

ZAProxy[43].

6. Analyzing the web application

There is no magic here. You simply use the application as

intended while proxying the traffic through Burp Suite or

ZAP. If the application is small, run Burp or ZAP spider while

excluding any out-of-scope resources to cover most of your

target.

When browsing and analyzing your application, always try to

understand the bigger picture. Some of the things you can

check are as follows.

6.1. Entry points

Enumerating all the entry points allows you to maximize

your chances of finding bugs.

Look how the application communicates with your browser.

For example, modern web application use APIs. Therefore,

you can look if it follows a RESTful convention. If it is the

case, try possible injections inside the URL. For example, if

you have an endpoint such as /api/accounts/name , you can try

/api/accounts/’+or+1=1+--+ for a SQL injection.

Make a note of GET and POST parameters and look for any

interesting ones. For example, a filter parameter in a search

feature is likely to be used in a SQL query inside the where

clause.

Tinker with HTTP headers, such as the Referer, User-Agent,

Host and X-Forwarded-For, and look how the application

responds. If it returns different output, you might be

traversing a reverse proxy along the way. Here is an

example[44] of how you can abuse the Host header.

https://youtu.be/MQCJJXH4db8

Locate session tokens and understand what type is used,

how the application generates, stores, and transmits them.

For example, the application might use JWT tokens[45], or

session cookies.

Enumerate all the features of the application, including the

premium ones.

Notice any divergence from the standard user interface,

parameter names, endpoint convention, etc. There might be

a lack of proper security compared to the rest of the

application.

6.2. Mapping the attack surface

The following table lists potential vulnerabilities that you

usually exist on the behavior you spot when browsing each

feature. Use it as a source of inspiration when you want to

find an attack angle.

Note: You have to prove a concrete impact before sending

your report to a bug bounty program, otherwise it will likely

be closed as informative, at best.

Behavior Potential

vulnerabilities

Identifiable web

server

Common

misconfiguration,

known exploits.

Third-party

components

Known vulnerabilities

and public exploits.

Email interaction Email/command

injection.

https://youtu.be/SuDN35-aefY

Error messages Information disclosure.

Off-site links Leakage of query

strings in the Referer.

User

impersonation

Privilege escalation,

account takeover.

Access Control Horizontal and vertical

escalation.

Session tokens Predictable tokens,

insecure generation or

handling of session

tokens.

Multistage

functions

Logic flaws.

Login Username

enumeration, weak

passwords, brute-

force.

Dynamic

redirects

Redirection and

header injection.

Reflected input HTML injection, XSS.

File

upload/download

RCE, XXE, Path

traversal.

Database

interaction

SQL/NoSQL injection.

Client-side

validation

Checks may not be

replicated on the

server.

Organize the finding by building a functional map diagram

that lists functions with their inputs and outputs.

Based on the result of your analysis, formulate a plan of

attack, prioritizing the most interesting-looking functionality

and the most serious of the associated potential

vulnerabilities.

6.3. Additional testing tips

Navigate the application with JavaScript enabled and

disabled, same thing for cookies. You might detect a weird

behavior when you hit a use case that the developers didn’t

anticipate.

To disable JavaScript in Firefox, go to the address bar and

type about:config and set the key javascript.enabled to false . To

disable cookies, got to settings > Privacy > history > don't

accept cookies.

To find hidden content, here are some instructions.

— Notice keywords like "test this function" and "TODO"

comments in the JavaScript code or the HTML

comments. They might reveal hidden endpoints or

incomplete features.

— Send manual requests to known valid and invalid

resources and note how the server handles it. Then,

use a wordlist with Wfuzz or ffuf[46] to enumerate

directories.

— Use Burp Suite’s Intruder tool with custom endpoints

based on the patterns you learned. For example, if a

feature uses the endpoint /getThat , try /deleteThis ,

/removeThat , /addThat , etc).

https://github.com/ffuf/ffuf

— Use the Intruder to brute-force resources identified by

integers. For example, if there is and endpoint of the

form /accounts/10 , try /accounts/11 . You might access

unauthorized accounts.

— Review JavaScript, HTML and CSS code, and look for

banners, Ajax requests, form actions and comments for

any additional endpoints.

— Reuse Wfuzz, this time including the newly found

resources, and add extensions such as: txt, bak, src,

inc, old, java and cs, etc. to download any static files

which contain server-side code.

[1] https://subscribepage.com/owasp_top_ten_hands_on_training_lab

[2]
 https://thehackerish.com/oscp-certification-all-you-need-to-know

[3]
 www.hackerone.com

[4]
 www.bugcrowd.com

[5]
 https://thehackerish.com/the-best-hacking-books-for-ethical-hackers/#wahh

[6]
 https://www.youtube.com/watch?v=-FAjxUOKbdI

[7]
 https://www.youtube.com/watch?v=2R4YXEAG6AI

[8] https://hackerone.com/hacktivity

[9] https://portswigger.net/burp/communitydownload

[10] Capture the flag

[11] https://cheatsheetseries.owasp.org/cheatsheets/Cross-

Site_Request_Forgery_Prevention_Cheat_Sheet.html

[12]
 https://thehackerish.com/cross-site-scripting-xss-explained/

[13]
 Comma-separated values representing data in a tabular format

[14] https://portswigger.net/kb/issues/00200308_client-side-template-injection

[15] https://github.com/aboul3la/Sublist3r

[16] https://dnsdumpster.com/

[17] https://github.com/OWASP/Amass

[18] https://owasp.org/

[19] https://www.certificate-transparency.org/

[20] https://www.elastic.co/elasticsearch/service

[21] https://www.elevenpaths.com/innovation-labs/tools/foca

https://subscribepage.com/owasp_top_ten_hands_on_training_lab

[22] https://github.com/lanmaster53/recon-ng

[23] https://www.metasploit.com/

[24] https://thehackerish.com/owasp-top-10-vulnerabilities-injection-explained/

[25] Structured Query Language

[26] https://thehackerish.com/sql-injection-explained-owasp-top-ten-vulnerabilities/

[27] Asynchronous JavaScript and XML

[28] Cross-Origin Resource Sharing

[29]
 https://github.com/laramies/theHarvester

[30]
 https://en.wikipedia.org/wiki/DNS_zone_transfer

[31]
 https://github.com/mschwager/fierce

[32]
 https://github.com/snwlol/crt.sh/blob/master/crt.sh

[33]
 https://github.com/OWASP/Amass/blob/master/doc/install.md

[34]
 https://github.com/OWASP/Amass/blob/master/doc/user_guide.md

[35]
 https://www.YouTube.com/watch?v=HhJv8CU-RIk

[36]
 https://github.com/tomnomnom/httprobe

[37]
 https://github.com/michenriksen/aquatone#installation

[38]
 https://github.com/danielmiessler/SecLists

[39]
 https://www.YouTube.com/watch?v=IYk7-xvOMOo

[40]
 https://github.com/maK-/parameth

[41]
 https://www.exploit-db.com/searchsploit

[42] https://thehackerish.com/owasp-top-10-training-for-burp-suite/

[43] https://thehackerish.com/owasp-top-10-training-setup-for-owasp-zap/

[44]
 https://youtu.be/MQCJJXH4db8

[45]
 https://youtu.be/SuDN35-aefY

[46]
 https://github.com/ffuf/ffuf

	Foreword
	A bug bounty hunting journey
	Too good to be true
	Why is the start always hard?
	My first bug bounty
	N/A, Informative, and Reputation
	The duplicate nightmare
	Reconnaissance and private hacks
	The curse of burnout
	I am still missing something
	Not the same mistake again
	Achieving my goal
	The end?

	Appendix A: Approach a new target
	1.OSINT
	2.Probe live assets
	3.Port scanning

	Appendix B: Web hacking checklist
	1.Scan the running services
	2.Directory enumeration
	3.JavaScript enumeration
	4.Parameter discovery
	5.Enumerate the web app technologies
	6.Analyzing the web application

